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Abstract

Fine-tuning is the de facto way of leveraging
large pretrained language models for down-
stream tasks. However, fine-tuning modifies
all the language model parameters and there-
fore necessitates storing a full copy for each
task. In this paper, we propose prefix-tuning, a
lightweight alternative to fine-tuning for natu-
ral language generation tasks, which keeps lan-
guage model parameters frozen and instead op-
timizes a sequence of continuous task-specific
vectors, which we call the prefix. Prefix-tuning
draws inspiration from prompting for language
models, allowing subsequent tokens to attend
to this prefix as if it were “virtual tokens”.
We apply prefix-tuning to GPT-2 for table-to-
text generation and to BART for summariza-
tion. We show that by modifying only 0.1% of
the parameters, prefix-tuning obtains compara-
ble performance in the full data setting, outper-
forms fine-tuning in low-data settings, and ex-
trapolates better to examples with topics that
are unseen during training.

1 Introduction

Fine-tuning is the prevalent paradigm for using
large pretrained language models (LMs) (Radford
et al., 2019; Devlin et al., 2019) to perform down-
stream tasks (e.g., summarization), but it requires
updating and storing all the parameters of the LM.
Consequently, to build and deploy NLP systems
that rely on large pretrained LMs, one currently
needs to store a modified copy of all the LM pa-
rameters for each task. This can be prohibitively
expensive given the size of current LMs; for exam-
ple, GPT-2 has 774M parameters (Radford et al.,
2019) and GPT-3 has 175B parameters (Brown
et al., 2020).

A natural approach to this problem is lightweight
fine-tuning, which freezes most of the pretrained
parameters and only tunes a smaller set of param-
eters. For example, adapter-tuning (Rebuffi et al.,

Figure 1: Fine-tuning (top) updates all LM param-
eters (the red Transformer box) and requires storing
a full model copy for each task. We propose prefix-
tuning (bottom), which freezes the LM parameters and
only optimizes the prefix (the red prefix blocks). Con-
sequently, we only need to store the prefix for each
task, making prefix-tuning modular and space-efficient.
Note that each vertical block denote transformer activa-
tions at one time step.

2017; Houlsby et al., 2019) inserts additional task-
specific layers between the layers of pretrained
language models. Adapter-tuning has promising
performance on natural language understanding
and generation benchmarks, attaining comparable
performance with fine-tuning while adding only
around 2–4% task-specific parameters (Houlsby
et al., 2019; Lin et al., 2020).

At the limit, GPT-3 (Brown et al., 2020) can
be deployed using in-context learning, which is
a form of prompting, without modifying any LM
parameters. In in-context learning, Brown et al.
(2020) prepend a natural language task instruction
(e.g., TL;DR for summarization) and a few exam-
ples to the task input, and then generate the task
output from the LM. However, since Transformers
can only condition on a bounded-length context
(e.g., 2048 tokens for GPT-3), in-context learning
is restricted to very small training sets.



In this paper, we propose prefix-tuning, a
lightweight alternative to fine-tuning for natural lan-
guage generation (NLG) tasks, inspired by prompt-
ing. Consider the task of generating a textual de-
scription of a data table, as shown in Figure 1,
where the task input is a linearized table (e.g.,
“name: Starbucks | type: coffee shop”) and the out-
put is a textual description (e.g., “Starbucks serves
coffee.”). Prefix-tuning prepends a sequence of
continuous task-specific vectors to the input, which
we call a prefix, depicted by red blocks in Figure 1
(bottom). To generate each token, the LM can at-
tend to the prefix as if it were a sequence of “virtual
tokens”, but unlike prompting, the prefix consists
entirely of free parameters which do not correspond
to real tokens. In contrast to fine-tuning in Figure 1
(top), which updates all LM parameters and thus
requires storing a tuned copy of the model for each
task, prefix-tuning only optimizes the prefix. Con-
sequently, we only need to store one copy of the
large LM and a learned task-specific prefix, yield-
ing a very small overhead for each additional task
(e.g., 250K parameters for table-to-text).

In contrast to full fine-tuning, prefix-tuning is
also modular: we train an upstream prefix which
steers an unmodified LM, and therefore, a single
LM can support many tasks at once. In the con-
text of personalization where the tasks correspond
to users (Shokri and Shmatikov, 2015; McMahan
et al., 2016), we would have a separate prefix for
each user trained only on that user’s data, thereby
avoiding data cross-contamination. Moreover, the
prefix-based architecture enables us to even pro-
cess examples from multiple users/tasks in a single
batch, something that is not possible with other
lightweight fine-tuning approaches like adapter-
tuning.

We evaluate prefix-tuning on table-to-text gen-
eration using GPT-2 and abstractive summariza-
tion using BART. In terms of storage, prefix-tuning
stores 1000x fewer parameters than full fine-tuning.
In terms of performance when trained on full
datasets, prefix-tuning and fine-tuning are compara-
ble for table-to-text (§6.1), while prefix-tuning suf-
fers a small degradation for summarization (§6.2).
In low-data settings, prefix-tuning outperforms fine-
tuning on both tasks (§6.3). Prefix-tuning also ex-
trapolates better to tables (for table-to-text) and arti-
cles (for summarization) with unseen topics (§6.4).

2 Related Work

Fine-tuning for natural language generation.
Current state-of-the-art systems for natural lan-
guage generation (NLG) are based on fine-tuning
pretrained LMs. For table-to-text generation, Kale
(2020) fine-tunes a sequence-to-sequence model
(T5; Raffel et al., 2020). For extractive and abstrac-
tive summarization, researchers fine-tune masked
language models (e.g., BERT; Devlin et al., 2019)
and encode-decoder models (e.g., BART; Lewis
et al., 2020), respectively (Zhong et al., 2020; Liu
and Lapata, 2019; Raffel et al., 2020). For other
conditional NLG tasks such as machine transla-
tion and dialogue generation, fine-tuning is also the
prevalent paradigm (Zhang et al., 2020c; Stickland
et al., 2020; Zhu et al., 2020; Liu et al., 2020). In
this paper, we focus on table-to-text using GPT-2
and summarization using BART, but prefix-tuning
in principle can be applied to other generation tasks
and pretrained models, such as masked LMs.

Lightweight fine-tuning. Prefix-tuning falls
under the broad class of lightweight fine-tuning
methods, which freeze most of the pretrained
parameters and only tune a smaller set of param-
eters. The key question is how to augment the LM
architecture and decide which subset of pretrained
parameters to tune. One line of research learns a
task-specific parameter mask (Zhao et al., 2020;
Radiya-Dixit and Wang, 2020). Another line
of research inserts new modules with trainable
parameters. For example, Zhang et al. (2020a)
trains a “side” network that is fused with the
pretrained model via summation; adapter-tuning
inserts task-specific layers (adapters) between each
layer of the pretrained LM (Houlsby et al., 2019;
Lin et al., 2020; Rebuffi et al., 2017; Pfeiffer et al.,
2020). Compared to this line of work, which tunes
around 3.6% of the LM parameters, our method
obtains a further 30x reduction in task-specific
parameters, tuning only 0.1% while maintaining
comparable performance on table-to-text tasks.

Prompting. Prompting is a way of leveraging a
pretrained LM by prepending instructions and a
few examples to the task input and generating the
task output from the LM. For autoregressive LMs,
the most successful form of prompting is GPT-3’s
in-context learning (Brown et al., 2020), which
uses manually designed prompts to adapt its gen-
eration for different tasks in few-shot settings. For
masked LMs like BERT and RoBERTa (Liu et al.,



2019), prompt engineering has been explored for
natural language understanding tasks (Jiang et al.,
2020; Schick and Schütze, 2020). For example,
AutoPrompt (Shin et al., 2020) searches for a se-
quence of discrete trigger words and concatenates
it with each input to elicit sentiment or factual
knowledge from BERT and RoBERTa. In contrast
with AutoPrompt, our method optimizes contin-
uous prefixes, which are more expressive (§7.2);
moreover, we focus on language generation tasks.

Continuous vectors have been used to steer LMs;
for example, Subramani et al. (2020) showed that a
pretrained LSTM language model can reconstruct
arbitrary sentences by optimizing a continuous vec-
tor for each sentence, making the vector input-
specific. In contrast, prefix-tuning optimizes a task-
specific prefix that applies to all instances of that
task. As a result, unlike the previous work whose
application is limited to sentence reconstruction,
prefix-tuning can be applied to NLG tasks.

Controllable generation. Controllable genera-
tion aims to steer a pretrained language model
to match a sentence-level attribute (e.g., positive
sentiment or sports). Such control can happen at
training time: Keskar et al. (2019) pretrains the
language model (CTRL) to condition on metadata
such as keywords or URLs. The control can also
happen at decoding time, by weighted decoding
(GeDi, Krause et al., 2020) or iteratively updat-
ing the past activations (PPLM, Dathathri et al.,
2020). However, there is no straightforward way
to apply these controllable generation techniques
to enforce fine-grained control over generated con-
tents, as demanded by tasks like table-to-text and
summarization.

P*-tuning. Prefix tuning is an instance of a new
class of methods that has emerged, which we call
p*-tuning (since the other prominent instances, p-
tuning and prompt-tuning, also start with p), all
based on the idea of optimizing a continuous prefix
or prompt. Concurrent with our work, Qin and Eis-
ner (2021) learn mixtures of soft fill-in-the-blank
prompts to elicit knowledge from LMs such as
BERT and BART. Hambardzumyan et al. (2021)
learns task-specific embeddings that adapts BERT
for sentiment classification. Both works show that
tuning soft prompts outperforms previous work,
which optimizes over discrete prompts. P-tuning
(Liu et al., 2021) shows that jointly updating the
prompt embeddings and LM parameters improves

GPT-2’s performance on natural language under-
standing tasks, in both few-shot and full data set-
tings. In a followup work, Prompt-tuning (Lester
et al., 2021) simplifies our approach and applies
it to T5 (Raffel et al., 2020), demonstrating that
the performance gap between fine-tuning and p*-
tuning vanishes as the model size grows.

3 Problem Statement

Consider a conditional generation task where the
input x is a context and the output y is a sequence
of tokens. We focus on two tasks, shown in Fig-
ure 2 (right): In table-to-text, x corresponds to a lin-
earized data table and y is a textual description; in
summarization, x is an article and y is a summary.

3.1 Autoregressive LM

Assume we have an autoregressive neural language
model pφ(y | x) parametrized by φ (e.g., GPT-2;
Radford et al., 2019). As shown in Figure 2 (top),
let z = [x; y] be the concatenation of x and y;
let Xidx denote the sequence of indices that corre-
sponds to x, and Yidx denote the same for y.

The activation vector at time step i is hi ∈ Rd,
where hi = [h

(1)
i ; · · · ;h(n)i ] is a concatenation of

all activation layers at this time step, and h(j)i is the
activation vector of the j-th layer at time step i.1

An autoregressive neural LM computes hi as a
function of zi and the past activations in its left
context, as follows:

hi = LMφ(zi, h<i), (1)

where the last layer of hi is used to compute the
distribution for the next token: pφ(zi+1 | h≤i) =
softmax(Wφ h

(n)
i ) and Wφ is a matrix that maps

h
(n)
i to logits over the vocabulary.

3.2 Encoder-Decoder Architecture

We can also use an encoder-decoder architecture
(e.g., BART; Lewis et al., 2020) to model pφ(y | x),
where x is encoded by the bidirectional encoder,
and the decoder predicts y autoregressively (condi-
tioned on the encoded x and its left context). We
use the same indexing and activation notation, as
shown in Figure 2 (bottom): each hi for i ∈ Xidx
is computed by the a bidirectional encoder; each
hi for i ∈ Yidx is computed by an autoregressive
decoder using the same equation (1).

1In GPT-2, h(n)
i consists of a key-value pair, and the di-

mension of each key and value is 1024.



Figure 2: An annotated example of prefix-tuning using an autoregressive LM (top) and an encoder-decoder model
(bottom). The prefix activations ∀i ∈ Pidx, hi are drawn from a trainable matrix Pθ. The remaining activations are
computed by the Transformer.

3.3 Fine-tuning
In the full fine-tuning framework, we initialize with
the pretrained parameters φ. Here pφ is a train-
able language model distribution and we perform
gradient updates on the following log-likelihood
objective:

max
φ

log pφ(y | x) = max
φ

∑
i∈Yidx

log pφ(zi | h<i).

(2)

4 Prefix-Tuning

We propose prefix-tuning as an alternative to full
fine-tuning for conditional generation tasks. We
first provide intuition in §4.1 before defining our
method formally in §4.2.

4.1 Intuition
Prompting has demonstrated that conditioning on a
proper context can steer the LM without changing
its parameters. For example, if we want the LM
to generate a word (e.g., Obama), we can prepend
its common collocations as context (e.g., Barack),
and the LM will assign much higher probability to
the desired word. Extending this intuition beyond
generating a single word or sentence, we want to
find a context that steers the LM to solve an NLG
task. Intuitively, the context could influence the
encoding of the task input x by guiding what to ex-
tract from x, and it could influence the generation
of the task output y by steering the next token distri-
bution. However, it’s non-obvious whether such a
context exists. Using natural language task instruc-
tions (e.g., “summarize the following table in one
sentence”) for the context might guide a human to

solve the task, but this fails for moderately-sized
pretrained LMs.2 Optimizing over the discrete in-
structions might help, but discrete optimization is
computationally challenging.

Instead of optimizing over discrete tokens, we
can optimize the instruction as continuous word em-
beddings, whose effects will be propagated upward
to all Transformer activation layers and rightward
to subsequent tokens. This is strictly more expres-
sive than a discrete prompt which is constrained to
the embeddings of real words. Prefix-tuning goes
one step further in increasing expressivity by op-
timizing the activations of all the layers, not just
the embedding layer. As another benefit, prefix-
tuning can directly modify representations deeper
in the network, therefore, avoiding long computa-
tion paths across the depth of the network.

4.2 Method

Prefix-tuning prepends a prefix for an autoregres-
sive LM to obtain z = [PREFIX;x; y], or prepends
prefixes for both encoder and decoder to obtain
z = [PREFIX;x; PREFIX′; y], as shown in Figure 2.
Here, Pidx denotes the sequence of prefix indices,
and we use |Pidx| to denote the length of the prefix.

We follow the recurrence relation in equa-
tion (1), except that the activations of the prefix
indices are free parameters, given by a matrix Pθ
(parametrized by θ) of dimension |Pidx| × dim(hi).

hi =

{
Pθ[i, :], if i ∈ Pidx,
LMφ(zi, h<i), otherwise.

(3)

2In our preliminary experiments, GPT-2 and BART fail in
this setting; the only exception is GPT-3.



The training objective is the same as equation (2),
but the set of trainable parameters changes: the lan-
guage model parameters φ are fixed and the prefix
parameters θ are the only trainable parameters.

Here, each hi is a function of the trainable Pθ.
When i ∈ Pidx, this is clear because hi copies
directly from Pθ. When i 6∈ Pidx, hi still depends
on Pθ, because the prefix activations are always
in the left context and will therefore affect any
activations to the right.

4.3 Parametrization of Pθ
Empirically, directly updating the Pθ parameters
leads to unstable optimization and a slight drop
in performance.3 So we reparametrize the matrix
Pθ[i, :] = MLPθ(P ′θ[i, :]) by a smaller matrix (P ′θ)
composed with a large feedforward neural network
(MLPθ). Now, the trainable parameters include P ′θ
and the parameters of MLPθ. Note that Pθ and
P ′θ has the same number of rows (i.e., the prefix
length), but different number of columns.4

Once training is complete, these reparametriza-
tion parameters can be dropped, and only the prefix
(Pθ) needs to be saved.

5 Experimental Setup

5.1 Datasets and Metrics

We evaluate on three standard neural generation
datasets for the table-to-text task: E2E (Novikova
et al., 2017), WebNLG (Gardent et al., 2017), and
DART (Radev et al., 2020), as shown in Table 1.
The datasets are ordered by increasing complexity
and size. E2E only has 1 domain (i.e. restaurant
reviews); WebNLG has 14 domains, and DART
is open-domain, using open-domain tables from
Wikipedia. For evaluation, we report the metrics
using the official evaluation scripts (see details in
Appendix A.1).

For the summarization task, we use the XSUM
(Narayan et al., 2018) dataset, which is an abstrac-
tive summarization dataset on news articles. We
report ROUGE-1, ROUGE-2 and ROUGE-L.

5.2 Methods

For table-to-text generation, we compare prefix-
tuning with three other methods: full fine-tuning

3We find in preliminary experiments that directly optimiz-
ing the prefix is very sensitive to initialization.

4Pθ has dimensions |Pidx| × dim(hi) while Pθ has
dimensions |Pidx| × k. We choose k = 512 for table-to-text
and 800 for summarization. MLPθ maps from k to dim(hi).

#examples input length output length

E2E 50K 28.5 27.8
WebNLG 22K 49.6 30.7

DART 82K 38.8 27.3

XSUM 225K 473.3 28.1

Table 1: Datasets statistics. The input and output
length is the number of BPE tokens per example. For
the three table-to-text datasets, the input length is the
length of linearized tables (details in Appendix A.1).

(FT-FULL), fine-tuning only the top 2 layers (FT-
TOP2), and adapter-tuning (ADAPTER).5 We also
report the current state-of-the-art results on these
datasets: On E2E, Shen et al. (2019) uses a prag-
matically informed model without pretraining. On
WebNLG, Kale (2020) fine-tunes T5-large. On
DART, no official models trained on this dataset
version are released.6 For summarization, we com-
pare against fine-tuning BART (Lewis et al., 2020).

5.3 Architectures and Hyperparameters

For table-to-text, we use GPT-2MEDIUM and GPT-
2LARGE. For summarization, we use BARTLARGE.
Our implementation is based on the Hugging Face
Transformers (Wolf et al., 2020).

At training time, we use the AdamW optimizer
(Loshchilov and Hutter, 2019) and a linear learn-
ing rate scheduler, as suggested by the Hugging
Face default setup. The hyperparameters we tune
include the number of epochs, batch size, learning
rate, and prefix length. Hyperparameter details are
in the appendix. The default setting is 10 epochs,
batch size 5, learning rate 5 ·10−5 and prefix length
10. The table-to-text models are trained on TITAN
Xp or GeForce GTX TITAN X machines. Prefix-
tuning takes 0.2 hours per epoch to train on 22K
examples, whereas fine-tuning takes around 0.3
hours per epoch. The summarization models are
trained on Tesla V100 machines, taking 1.25 hours
per epoch on the XSUM dataset. For time effi-
ciency, prefix-tuning is around 30% faster than
fine-tuning. For GPU memory efficiency, prefix-
tuning with batchsize 1 takes 18% of the total GPU
memory, whereas fine-tuning takes 50%.

At decoding time, for table-to-text, we use beam
search with beam size 5. For summarization, we
use beam size 6 and length normalization 0.8. De-
coding takes 1.2 seconds per sentence (without

5Same implementation as Lin et al. (2020).
6The official benchmark model is trained on v.1.0.0 while

the release dataset is v1.1.1.



batching) for table-to-text, and 2.6 seconds per
batch (using a batch size of 10) for summarization.

6 Main Results
6.1 Table-to-text Generation

We find that by updating only 0.1% task-specific pa-
rameters,7 prefix-tuning is effective in table-to-text
generation, outperforming other lightweight base-
lines (ADAPTER and FT-TOP2) even by updating
30x fewer parameters and achieving a comparable
performance with (full) fine-tuning. This trend
holds for all datasets: E2E, WebNLG,8 and DART.

If we match the number of parameters for prefix-
tuning and adapter-tuning to be 0.1%, Table 2
shows that prefix-tuning is significantly better than
ADAPTER (0.1%), attaining 4.1 BLEU improve-
ment per dataset on average. Even when we com-
pare with fine-tuning (100%) and adapter-tuning
(3.0%), which update significantly more parame-
ters than prefix-tuning, prefix-tuning still achieves
results comparable or better than those two systems.
This demonstrates that prefix-tuning is more Pareto
efficient than adapter-tuning, significantly reducing
parameters while improving generation quality.

Additionally, attaining good performance on
DART suggests that prefix-tuning can generalize
to tables with diverse domains and a large number
of relations. We will delve deeper into extrapo-
lation performance (i.e., generalization to unseen
categories or topics) in §6.4.

In summary, prefix-tuning is an effective and
space-efficient method to adapt GPT-2 to table-to-
text generation. It also maintains the performance
gains when scaling up to GPT-2LARGE, suggesting
it has the potential to scale to even larger models
with a similar architecture, like GPT-3.

6.2 Summarization

As shown in Table 3, with 2% parameters, prefix-
tuning obtains slightly lower performance than fine-
tuning (36.05 vs. 37.25 in ROUGE-L). With only
0.1% parameters, prefix-tuning underperforms full
fine-tuning (35.05 vs. 37.25). There are several
differences between XSUM and the three table-to-
text datasets which could account for why prefix-
tuning has comparative advantage in table-to-text:

7250K for E2E, 250K for WebNLG, and 500K for DART
versus 345M GPT-2 parameters.

8The S,U,A columns in WebNLG represents SEEN, UN-
SEEN, and ALL respectively; SEEN categories appear at
training time; UNSEEN categories only appears at test time;
and ALL is the combination of the two.

(1) XSUM contains 4x more examples than the
three table-to-text datasets on average; (2) the input
articles are 17x longer than the linearized table in-
put of table-to-text datasets on average; (3) summa-
rization is more complex than table-to-text because
it requires selecting key contents from an article.

6.3 Low-data Setting

Based on the results from table-to-text (§6.1)
and summarization (§6.2), we observe that prefix-
tuning has a comparative advantage when the num-
ber of training examples is smaller. To explore
the low-data setting more systematically, we sub-
sample the full dataset (E2E for table-to-text and
XSUM for summarization) to obtain small datasets
of size {50, 100, 200, 500}. For each size, we sam-
ple 5 different datasets and average over 2 training
random seeds. Thus, we average over 10 models
for each low-data setting.9

Figure 3 (right) shows that prefix-tuning outper-
forms fine-tuning in low-data regimes by 2.9 BLEU
on average, in addition to requiring much fewer pa-
rameters, but the gap narrows as the dataset size
increases.

Qualitatively, Figure 3 (left) shows 8 examples
generated by both prefix-tuning and fine-tuning
models trained on different data levels. While both
methods tend to undergenerate (missing table con-
tents) in low data regimes, prefix-tuning tends to be
more faithful than fine-tuning. For example, fine-
tuning (100, 200)10 falsely claims a low customer
rating while the true rating is average, whereas
prefix-tuning (100, 200) generates a description
that is faithful to the table.

6.4 Extrapolation

We now investigate extrapolation performance to
unseen topics for both table-to-text and summariza-
tion. In order to construct an extrapolation setting,
we split the existing datasets so that training and
test cover different topics. For table-to-text, the
WebNLG dataset is labeled with table topics. There
are 9 categories that appear in training and dev, de-
noted as SEEN and 5 categories that only appear at
test time, denoted as UNSEEN. So we evaluate ex-
trapolation by training on the SEEN categories and
testing on the UNSEEN categories. For summa-
rization, we construct two extrapolation data splits:

9We also sample a dev split (with dev size = 30% × train-
ing size) for each training set. We use the dev split to choose
hyperparameters and perform early stopping.

10The number in the parenthesis refers to the training size.



E2E WebNLG DART
BLEU NIST MET R-L CIDEr BLEU MET TER ↓ BLEU MET TER ↓ Mover BERT BLEURT

S U A S U A S U A

GPT-2MEDIUM
FT-FULL 68.8 8.71 46.1 71.1 2.43 64.7 26.7 45.7 0.46 0.30 0.38 0.33 0.78 0.54 46.2 0.39 0.46 0.50 0.94 0.39
FT-TOP2 68.1 8.59 46.0 70.8 2.41 53.6 18.9 36.0 0.38 0.23 0.31 0.49 0.99 0.72 41.0 0.34 0.56 0.43 0.93 0.21
ADAPTER(3%) 68.9 8.71 46.1 71.3 2.47 60.5 47.9 54.8 0.43 0.38 0.41 0.35 0.46 0.39 45.2 0.38 0.46 0.50 0.94 0.39
ADAPTER(0.1%) 66.3 8.41 45.0 69.8 2.40 54.5 45.1 50.2 0.39 0.36 0.38 0.40 0.46 0.43 42.4 0.36 0.48 0.47 0.94 0.33
PREFIX(0.1%) 70.3 8.82 46.3 72.1 2.46 62.9 45.3 55.0 0.44 0.37 0.41 0.35 0.51 0.42 46.4 0.38 0.46 0.50 0.94 0.39

GPT-2LARGE
FT-FULL 68.5 8.78 46.0 69.9 2.45 65.3 43.1 55.5 0.46 0.38 0.42 0.33 0.53 0.42 47.0 0.39 0.46 0.51 0.94 0.40
Prefix 70.3 8.85 46.2 71.7 2.47 63.4 47.7 56.3 0.45 0.39 0.42 0.34 0.48 0.40 46.7 0.39 0.45 0.51 0.94 0.40

SOTA 68.6 8.70 45.3 70.8 2.37 63.9 52.8 57.1 0.46 0.41 0.44 - - - - - - - - -

Table 2: Metrics (higher is better, except for TER) for table-to-text generation on E2E (left), WebNLG (middle)
and DART (right). With only 0.1% parameters, Prefix-tuning outperforms other lightweight baselines and achieves
a comparable performance with fine-tuning. The best score is boldfaced for both GPT-2MEDIUM and GPT-2LARGE.

Source name : The Eagle | type : coffee shop | food : Chinese | price : cheap | customer
rating : average | area : riverside | family friendly : no | near : Burger King

Prefix (50) The Eagle is a cheap Chinese coffee shop located near Burger King.
Prefix (100) The Eagle is a cheap coffee shop located in the riverside near Burger King. It

has average customer ratings.
Prefix (200) The Eagle is a cheap Chinese coffee shop located in the riverside area near

Burger King. It has average customer ratings.
Prefix (500) The Eagle is a coffee shop that serves Chinese food. It is located in the riverside

area near Burger King. It has an average customer rating and is not family
friendly.

FT (50) The Eagle coffee shop is located in the riverside area near Burger King.
FT (100) The Eagle is a cheap coffee shop near Burger King in the riverside area. It has

a low customer rating and is not family friendly.
FT (200) The Eagle is a cheap Chinese coffee shop with a low customer rating. It is

located near Burger King in the riverside area.
FT (500) The Eagle is a cheap Chinese coffee shop with average customer ratings. It is

located in the riverside area near Burger King.
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Figure 3: (Left) qualitative examples in lowdata settings. (Right) prefix-tuning (orange) outperforms fine-tuning
(blue) in low-data regimes in addition to requiring many fewer parameters. The top two plots correspond to sum-
marization, measured by ROUGE-1 and ROUGE-2. The bottom two plots correspond to table-to-text, measured
by BLEU and ROUGE-L. The x-axis is the training size and the y-axis is the evaluation metric (higher is better).

R-1 ↑ R-2 ↑ R-L ↑
FT-FULL(Lewis et al., 2020) 45.14 22.27 37.25
PREFIX(2%) 43.80 20.93 36.05
PREFIX(0.1%) 42.92 20.03 35.05

Table 3: Performance of methods on the XSUM sum-
marization dataset. Prefix-tuning slightly underper-
forms fine-tuning in the full-data regime.

news-to-sports within-news
R-1 ↑ R-2 ↑ R-L ↑ R-1 ↑ R-2 ↑ R-L ↑

FT-FULL 38.15 15.51 30.26 39.20 16.35 31.15
PREFIX 39.23 16.74 31.51 39.41 16.87 31.47

Table 4: Extrapolation performance on XSUM. Prefix-
tuning outperforms fine-tuning on both news-to-sports
and within-news splits.

In news-to-sports, we train on news articles
and test on sports articles. In within-news, we
train on {world, UK, business} news and test on
the remaining news categories (e.g., health, tech).

On both table-to-text and summarization, prefix-
tuning extrapolates better than fine-tuning under all
metrics, as shown in Table 4 and the ‘U’ columns
of Table 2 (middle).

We also find that adapter-tuning achieves good
extrapolation performance, comparable with prefix-

tuning, as shown in Table 2. This shared trend
suggests that preserving LM parameters indeed has
a positive impact on extrapolation. However, how
prefix-tuning improves extrapolation is an open
question and we will discuss this further in §8.

7 Intrinsic Evaluation

We compare different variants of prefix-tuning to
study the impact of various design decisions. §7.1
studies the impact of the prefix length. §7.2 studies
tuning only the embedding layer, which is more
akin to tuning a discrete prompt. §7.3 compares
prefixing and infixing, which inserts trainable acti-
vations between x and y. §7.4 studies the impact of
various prefix initialization strategies. §7.5 further
studies the data efficiency of prefix-tuning.

7.1 Prefix Length

A longer prefix means more trainable parameters,
and therefore more expressive power.11 Figure 4
shows that performance increases as the prefix

11Empirically, longer prefixes have a negligible impact on
training and inference speed per batch, because attention com-
putation over the entire prefix is parallellized on GPUs.
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Figure 4: Prefix length vs. performance on summer-
ization (left) and table-to-text (right). Performance in-
creases as the prefix length increases up to a threshold
(200 for summarization and 10 for table-to-text) and
then a slight performance drop occurs. Each plot re-
ports two metrics (on two vertical axes).

E2E
BLEU NIST MET ROUGE CIDEr

PREFIX 70.3 8.82 46.3 72.1 2.46

Embedding-only: EMB-{PrefixLength}
EMB-1 48.1 3.33 32.1 60.2 1.10
EMB-10 62.2 6.70 38.6 66.4 1.75
EMB-20 61.9 7.11 39.3 65.6 1.85

Infix-tuning: INFIX-{PrefixLength}
INFIX-1 67.9 8.63 45.8 69.4 2.42
INFIX-10 67.2 8.48 45.8 69.9 2.40
INFIX-20 66.7 8.47 45.8 70.0 2.42

Table 5: Intrinsic evaluation of Embedding-only (§7.2)
and Infixing (§7.3). Both Embedding-only ablation and
Infix-tuning underperforms full prefix-tuning.

length increases up to a threshold (200 for sum-
marization, 10 for table-to-text) and then a slight
performance drop occurs. Prefixes longer than the
threshold lead to lower training loss, but slightly
worse test performance, suggesting that they tend
to overfit the training data.

7.2 Full vs Embedding-only

Recall in §4.1, we discussed optimizing the contin-
uous embeddings of the “virtual tokens.” We instan-
tiate that idea and call it embedding-only. The word
embeddings are free parameters, and the remaining
activation layers are computed by the Transformer.
Table 5 (top) shows that the performance drops
significantly, suggesting that tuning only the em-
bedding layer is not sufficiently expressive.

Embedding-only upper bounds the performance
of discrete prompt optimization (Shin et al., 2020),
because discrete prompt restricts the embedding
layer to exactly match the embedding of a real word.
Consequently, we have this chain of increasing ex-
pressive power: discrete prompting < embedding-
only < prefix-tuning.

7.3 Prefix-tuning vs Infix-tuning

We also investigate how the trainable activations’
position in the sequence affects performance. In

random
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Figure 5: Initializing the prefix with activations of real
words significantly outperforms random initialization,
in low-data settings.

prefix-tuning, we place them at the beginning
[PREFIX;x; y]. We can also place the trainable
activations between x and y (i.e. [x; INFIX; y]) and
call this infix-tuning. Table 5 (bottom) shows that
infix-tuning slightly underperforms prefix-tuning.
We believe this is because prefix-tuning can affect
the activations of x and y whereas infix-tuning can
only influence the activations of y.

7.4 Initialization
We find that how the prefix is initialized has
a large impact in low-data settings. Random
initialization leads to low performance with high
variance. Initializing the prefix with activations of
real words significantly improves generation, as
shown in Figure 5. In particular, initializing with
task relevant words such as “summarization” and
“table-to-text” obtains slightly better performance
than task irrelevant words such as “elephant”
and “divide”, but using real words is still better
than random. Moreover, in full data settings, the
initialization trick has no impact, and random
initialization leads to equally good performance.

Since we initialize the prefix with activations of
real words computed by the LM, this initialization
strategy is concordant with prefix-tuning’s philos-
ophy, which preserves the pretrained LM as much
as possible.

7.5 Data Efficiency
We also investigate the data efficiency of prefix-
tuning (without initialization trick, a.k.a random
initialization) and full fine-tuning by comparing
their performance on 5 different data scales of the
E2E task (10%, 20%, 40%, 60%, and 80%). Fig-
ure 6 shows that prefix-tuning has better perfor-
mance than fine-tuning when using more than 20%
of the data. For data scale of 10%, prefix-tuning
with random initialization yields comparable or
slightly lower performance than full fine-tuning,
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Figure 6: Data efficiency curves: percentage of train-
ing set vs. performance on table-to-text (E2E). Prefix-
tuning (without the initialization trick) is more data-
efficient than fine-tuning when using more than 20%
of the data.

necessitating the initialization trick (§6.3) to im-
prove the performance in this low-data regime.

8 Discussion

We will discuss several favorable properties of
prefix-tuning and some open problems.

Personalization. As we note in §1, prefix-tuning
is advantageous when there are a large number
of tasks that needs to be trained independently.
One practical setting is user privacy (Shokri and
Shmatikov, 2015; McMahan et al., 2016). In order
to preserve user privacy, each user’s data needs to
be separated and a personalized model needs to be
trained independently for each user. Consequently,
each user can be regarded as an independent task. If
there are millions of users, prefix-tuning can scale
to this setting and maintain modularity, enabling
flexible addition or deletion of users by adding or
deleting their prefixes without cross-contamination.

Batching across users. Under the same person-
alization setting, prefix-tuning allows batching dif-
ferent users’ queries even though they are backed
by different prefixes. When multiple users query
a cloud GPU device with their inputs, it is compu-
tationally efficient to put these users in the same
batch. Prefix-tuning keeps the shared LM intact;
consequently, batching requires a simple step of
prepending the personalized prefix to user input,
and all the remaining computation is unchanged.
In contrast, we can’t batch across different users
in adapter-tuning, which has personalized adapters
between shared Transformer layers.

This batching benefit could also help create effi-
cient ensembles of multiple prefixes trained on the
same task (Lester et al., 2021).

Inductive bias of prefix-tuning. Recall that fine-
tuning updates all pretrained parameters, whereas
prefix-tuning and adapter-tuning preserve them.

Since the language models are pretrained on gen-
eral purpose corpora, preserving the LM parame-
ters might help generalization to domains unseen
during training. In concordance with this intuition,
we observe that both prefix-tuning and adapter-
tuning have significant performance gain in extrap-
olation settings (§6.4); however, how these methods
improve extrapolation is an open question.

While prefix-tuning and adapter-tuning both
freeze the pretrained parameters, they tune different
sets of parameters to affect the activation layers of
the Transformer. Recall that prefix-tuning keeps the
LM intact and uses the prefix and the pretrained at-
tention blocks to affect the subsequent activations;
adapter-tuning inserts trainable modules between
LM layers, which directly add residual vectors to
the activations. Moreover, we observe that prefix-
tuning requires vastly fewer parameters compared
to adapter-tuning while maintaining comparable
performance. We think this gain in parameter effi-
ciency is because prefix-tuning keeps the pretrained
LM intact as much as possible, and therefore ex-
ploits the LM more than adapter-tuning.

Recent work by Aghajanyan et al. (2020) uses
intrinsic dimension to show that there exists a low-
dimensional reparameterization that is as effective
for fine-tuning as the full parametrization. This
explains why good accuracy on downstream tasks
can be obtained by updating only a small num-
ber of parameters. Our work echoes this finding
by showing that good generation performance can
also be attained by updating a very small prefix.
However, prefix-tuning is not just about the size of
trainable parameters, but more importantly, which
subset of parameters to modify. Therefore, it would
be interesting future work to explore other light-
weight fine-tuning methods that achieve an even
better accuracy-size tradeoff.
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A Supplementary Material

A.1 Datasets and Metrics

We evaluate on three standard neural generation
datasets for the table-to-text task: E2E (Novikova
et al., 2017), WebNLG (Gardent et al., 2017), and
DART (Radev et al., 2020).

The E2E dataset contains approximately 50K ex-
amples with 8 distinct fields; it contains multiple
test references for one source table, and the average
output length is 22.9. We use the official evalua-
tion script,12 which reports BLEU (Papineni et al.,
2002), NIST (Belz and Reiter, 2006), METEOR
(Lavie and Agarwal, 2007), ROUGE-L (Lin, 2004),
and CIDEr (Vedantam et al., 2015).

The WebNLG (Gardent et al., 2017) dataset con-
sists of 22K examples, and the input x is a sequence
of (subject, property, object) triples. The average
output length is 22.5. In the training and validation
splits, the input describes entities from 9 distinct
DBpedia categories (e.g., Monument). The test
split consists of two parts: the first half contains
DB categories seen in training data, and the sec-
ond half contains 5 unseen categories. These un-
seen categories are used to evaluate extrapolation.
We use the official evaluation script, which reports
BLEU, METEOR and TER (Snover et al., 2006).

DART (Radev et al., 2020) is an open domain
table-to-text dataset, with similar input format
(entity-relation-entity triples) as WebNLG. The av-
erage output length is 21.6. It consists of 82K ex-
amples from WikiSQL, WikiTableQuestions, E2E,
and WebNLG and applies some manual or auto-
mated conversion. We use the official evaluation
script13 and report BLEU, METEOR, TER, Mover-
Score (Zhao et al., 2019), BERTScore (Zhang et al.,
2020b) and BLEURT (Sellam et al., 2020).

For the summarization task, we use the XSUM
(Narayan et al., 2018) dataset, which is an abstrac-
tive summarization dataset on news articles. There
are 225K examples. The average length of the ar-
ticles is 431 words and the average length of the
summaries is 23.3. We report ROUGE-1, ROUGE-
2 and ROUGE-L, computed by the python package
rouge-score.

Data pre-processing. For table-to-text, we lin-
earize a table x in order to fit into a language model
context. In the E2E dataset, for example, “(field A,

12https://github.com/tuetschek/
e2e-metrics

13https://github.com/Yale-LILY/dart

value A), (field B, value B)” is linearized to “field
A : value A | field B : value B”. Also, in WebNLG
and DART, a sequence of triple “(entity1.1, rela-
tion1, entity1.2), (entity2.1, relation2, entity2.2)”
is linearlized as “entity1.1 : relation1 : entity1.2 |
entity2.1 : relation2 : entity2.2”.

For summarization, we truncate the articles x to
512 BPE tokens.

Extrapolation data splits. We construct two ex-
trapolation data splits news-to-sports and
within-news from the original XSUM dataset.
XSUM dataset is drawn from BBC news, and we
identify the topic of each article based on its URL.
Since “news” and “sports” are the two domains
with the most articles, we create our first train/test
split. Additionally, “news” has subdomains such as
“UK”, “world”, and “technology”. Consequently,
we create a second data split, using the top 3 news
subdomains (i.e. {world, UK, business }) as train-
ing data and the rest as test data.

A.2 Hyperparameters

In Table 6, we report the hyperparameters used to
train the best-performing models documented in
the experiment section.

As for the search range of each hyperparameters:
the learning rates are selected from {1e-5, 5e-05,
8e-05}; the number of epochs are selected from {5,
10} for table-to-text and {5, 25, 30 } for summa-
rization; We select the largest batch size that can fit
into GPU memory and didn’t explicitly tune for an
optimal batch size. Prefix length are selected from
{1, 5, 10, 20, 40} for table-to-text and {1, 10, 20,
50, 80, 100, 200, 300} for summarization. We use
perplexity and automatic generation metrics on the
validation set to select the best-performing models.

For table-to-text in the low data settings, we use a
learning rate of 5e-5, and a batch size of 10. We use
a prefix length of 6, since we apply the initialization
trick and initialize the prefix with “table-to-text:”,
which contains 6 BPE tokens. Instead of tuning
the number of epochs, we tune the max steps of
updates in {100, 200, 400, 600 }, as shown in
Table 8. We apply early stopping based on the
performance of validation set, where the validation
size =30% training size.

For summarization in the low data settings, we
use a learning rate of 5e-5 and a warmup step of
100. We use a batch size of 5 for prefix-tuning
and 6 for fine-tuning. We apply the initialization
trick and use the word “summarize” to initialize

https://github.com/tuetschek/e2e-metrics
https://github.com/tuetschek/e2e-metrics
https://github.com/Yale-LILY/dart


learning rate # epoch batch size prefix length

Prefix:
E2E 8e-05 5 10 5
WebNLG 5e-05 5 5 5
DART 5e-05 10 5 10
XSUM 5e-05 30 14 100

Adapter:
E2E (3%) 5e-05 5 5 -
E2E (0.1%) 8e-05 10 5
WebNLG (3%) 5e-05 5 5 -
WebNLG (0.1%) 5e-05 10 5 -
DART (3%) 5e-05 5 5 -
DART (0.1%) 8e-05 5 5 -

Fine-tune:
E2E 5e-05 5 10 -
WebNLG 1e-05 10 6 -
DART 1e-05 10 6 -

FT-top2:
E2E 5e-05 5 10 -
WebNLG 5e-05 10 9 -
DART 5e-05 5 5 -

within-news
Fine-tune 3e-5 5 18 -
Prefix 5e-5 30 36 80
news-to-sports
Fine-tune 3e-5 5 18 -
Prefix 5e-5 15 36 40

Table 6: Hyperparameter settings for our method and
baseline methods.

R-1 ↑ R-2 ↑ R-L ↑
PREFIX(2%) 43.30 20.35 35.21
PREFIX(0.1%) 41.54 18.56 33.13

Table 7: Metrics for summarization on XSUM valida-
tion set.

the prefix, resulting in a prefix length of 1. We tune
the number of epochs in {3, 5, 10, 20, 30}, shown
in Table 8. We also apply early stopping based on
validation performance.

For the extrapolation setting, the hyperparame-
ters for our table-to-text model is the same as the
hyperparameters of WebNLG. The hyperparame-
ters for summarization is shown in the last block of
Table 6.

A.3 Validation Performance

Table 9 shows the validation performance on the
three table-to-text datasets. Table 7 shows the vali-
dation performance on XSUM.

size=50 size=100 size=200 size=500

Prefix (max steps) 200 200 200 400
Finetune (max steps) 100 100 200 400

Prefix (epoch) 30 20 20 20
Finetune (epoch) 30 10 3 3

Table 8: Max # update steps for low data settings.

A.4 Additional Results for Low-data Settings
Figure 7 supplements the low-data performance
curves in Figure 3 by plotting the relationship be-
tween training size and generation metrics for both
prefix-tuning and fine-tuning.

A.5 Additional Results for the Initialization
Experiment

Figure 8 supplements Figure 3 by plotting addi-
tional metrics for our initialization technique §7.4.
It validates that random initialization (from a uni-
form (0,1) distirbution) significantly underperforms
initializing with real words; Additionally, initializ-
ing with task-relevant words (e.g., “summarization”
and “table-to-text”) attains slightly better gener-
ation scores than initializing with task-irrelevant
words (e.g., “elephant” and “banana”).

A.6 Qualitative Examples for Extrapolation
Table 10 contains qualitative examples from both
seen and unseen categories in WebNLG. We find
that for unseen categories, both prefix-tuning and
fine-tuning tend to undergenerate (generated out-
put do not cover full table contents) or generate
untruthfully (generated output is inconsistent with
table contents). In particular, prefix-tuning tends to
undergenerate whereas fine-tuning tends to gener-
ate untruthfully. For seen categories, both perform
fairly well in terms of coverage and truthfulness.



E2E WebNLG DART
BLEU NIST MET R-L CIDEr BLEU MET TER ↓ BLEU MET TER ↓ Mover BERT BLEURT

GPT-2MEDIUM
FT-FULL 74.2 8.76 49.3 76.9 2.66 66.03 0.47 0.30 50.46 0.41 0.44 0.52 0.95 0.41
FT-TOP2 72.7 8.51 48.2 75.3 2.60 54.61 0.39 0.47 48.41 0.39 0.48 0.48 0.94 0.33
ADAPTER(3%) 71.7 8.53 48.4 74.6 2.60 60.63 0.43 0.33 48.56 0.40 0.44 0.51 0.95 0.40
ADAPTER(0.1%) 68.1 8.30 45.9 71.4 2.41 53.24 0.40 0.39 44.72 0.38 0.47 0.47 0.94 0.35
PREFIX(0.1%) 74.8 8.80 49.4 76.8 2.69 64.52 0.46 0.32 51.11 0.41 0.43 0.52 0.95 0.42

GPT-2LARGE
FT-FULL 72.1 8.62 48.5 75.1 2.56 64.69 0.46 0.31 51.00 0.41 0.44 0.52 0.95 0.43
Prefix 74.8 8.81 49.5 77.0 2.72 64.11 0.46 0.33 50.84 0.41 0.43 0.52 0.95 0.42

Table 9: Metrics on the development set (higher is better, except for TER) for table-to-text generation on E2E
(left), WebNLG (middle) and DART (right).

100 200 300 400 500
training_data_size

32

34

36

ro
ug

e-
1

method
FT
PT

100 200 300 400 500
training_data_size

10

11

12

13

14

15
ro

ug
e-

2

method
FT
PT

100 200 300 400 500
training_data_size

24

26

28

ro
ug

e-
L

method
FT
PT

100 200 300 400 500
training_data_size

3

4

5

6

7

NI
ST

method
FT
PT

100 200 300 400 500
training_data_size

0.32

0.34

0.36

0.38

M
ET

EO
R

method
FT
PT

100 200 300 400 500
training_data_size

1.2

1.4

1.6

1.8

CI
DE

r

method
FT
PT

Figure 7: Prefix-tuning (orange) outperforms fine-tuning (blue) in low-data regimes in addition to requiring many
fewer parameters. The top three plots correspond to summarization, measured by ROUGE-1, ROUGE-2, and
ROUGE-L. The bottom three plots correspond to table-to-text, measured by NIST, METEOR, and CIDEr. The
x-axis is the training size and the y-axis is the evaluation metric (higher is better).
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Figure 8: Initializing the prefix with activations of real words significantly outperforms random initialization, in a
low-data setting with 100 training data.



Source [Unseen, Athelete] (Al Kharaitiyat SC, club, Alaa Abdul-Zahra), (Al Khor, ground, Al Kharaitiyat SC), (Shabab Al-Ordon Club,
club, Alaa Abdul-Zahra) (Amar Osim, manager, Al Kharaitiyat SC)

Prefix-tuning Al Kharaitiyat SC are managed by Amar Osim and play at their ground at Al Khor. Al Kharaitiyat SC are also
the club for which Alaa Abdul-Zahra is a player.

Fine-tuning Alaa Abdul-Zahra plays for Al-Kharaitiyat SC and Shabab Al-Ordon Club. He also plays for Al-Khor and
manages Al-Kharaitiyat SC.

Reference Alaa Abdul Zahra plays for Al Kharaitiyat SC which is located at Al Khor and managed by Amar Osim. The
Shabab Al-Ordon club is associated with Alaa Abdul-Zahra.

Source [Unseen, Transportation] (Genoa, location, Costa Crociere), (AIDA Cruises, operator, AIDAstella), (Costa Crociere, owner, AIDAstella)

Prefix-tuning AID Astella is operated by Aida Cruises and is owned by the Costa Rican tourist resort of Genoa.
Fine-tuning AID Astella, operated by AIDA-Cruises, is located in Genoa and is owned by the Costa Rican government.
Reference Costa Crociere is the owner of the AIDAstella and are based in Genoa. The operator of AIDAstella is AIDA

Cruises.

Source [Unseen, Politician] (Euro, currency, Netherlands), (Stellendam, birthPlace, Ab Klink ), (Netherlands, nationality, Ab Klink)

Prefix-tuning Ab Klink was born in Stellendam and is a national of the Netherlands where the currency is the Euro.
Fine-tuning Ab Klink is a national of the Netherlands where the currency is the Euro. He was born in Stellendam.
Reference Ab Klink was born in Stellendam in the Netherlands, where the national currency is the euro.

Source [Unseen, Politician] (Robert E, Lee, commander, Battle of Salem Church), (American Civil War, isPartOfMilitaryConflict, Battle of
Salem Church), (Battle of Salem Church, battles, Aaron S. Daggett)

Prefix-tuning Robert E. Lee was the commander of the Battle of Salem Church which was part of the military conflict in the
American Civil war.

Fine-tuning The Battle of Salem Church is part of the American Civil War and was commanded by Robert E. Lee.
Reference Robert E Lee was a commander in the Battle of Salem Church, which was one of the military conflicts in the

American Civil War. Aaron S Daggett fought in the same battle.

Source [Unseen, Artist] (Christian alternative rock, musicSubgenre, Alternative rock), (Alternative rock, genre, Andrew White (musi-
cian))

Prefix-tuning Andrew White is a Christian alternative rock musician.
Fine-tuning Andrew White, a Christian alternative rocker, performs.
Reference The musician Andrew White’s genre is alternative rock, the genre which has the sub genre Christian alternative

rock.

Source [Unseen, Artist] (Hip hop music, genre, Allen Forrest), (solo singer, background, Allen Forrest)

Prefix-tuning Allen Forrest is a solo singer.
Fine-tuning Born in
Reference Allen Forrest is a solo singer whose genre is Hip Hop music.

Source [Seen, ComicsCharacter] (Americans, nationality, Ducan Rouleau), (Ducan Rouleau, creator, Baymax),(Alan Tudyk, starring, Big Hero 6
(film)), (Steven T Segle, creator, Baymax), (Big Hero 6 (film), serires, Baymax)

Prefix-tuning Baymax is a character in Big Hero 6 which stars Alan Tudyk. He was created by Steven T. Seagle and the
American, Duncan Rouleau.

Fine-tuning Alan Tudyk stars in the film Big Hero 6 in which Baymax is a character created by Steven T. Seagle and the
American, Duncan Rouleau.

Reference Baymax is a character who appeared in Big Hero 6 starring Alan Tudyk. It was created by Steven T Seagle and
the American, Duncan Rouleau.

Source [Seen, City] (Washington, D.C., capital, United States), (White Americans, ethnicGroup, United States), (United States,
country, New Jersey), (New York City, largest City, United States), (New Jersy, isPartOf, Atlantic City)

Prefix-tuning Washington D.C. is the capital of the United States where the largest city is New York City and the White
Americans are an ethnic group. Atlantic City, New Jersey is also part of the United States.

Fine-tuning Atlantic City, New Jersey is part of New Jersey in the United States. The capital city is Washington D.C. and
one of the ethnic groups is White Americans.

Reference New York City (NYC) is the largest U.S. city. Atlantic City, New Jersey are also part of the United States with
its capital as Washington, DC and home to White Americans.

Table 10: Qualitative examples from WebNLG. The first 6 examples are from the unseen categories, labeled next
to source; the last two examples are from the seen categories. For unseen categories, both prefix-tuning and fine-
tuning tend to undergenerate (generated output do not cover full table contents) or generate untruthfully (generated
output is inconsistent with table contents). In particular, prefix-tuning tends to undergenerate more often than
generate untruthfully whereas fine-tuning tends to generate untruthfully. For seen categories, both perform fairly
well in terms of coverage and truthfulness.


